

Low-Pressure In-Line Filters

FNL 1000 · FNL 2000

- In-line mounting
- Operating pressure up to 40 bar
- Nominal flow rate up to 2000 l/min

Description

Application

In the pressure circuits of hydraulic and lubrication systems.

Performance features

Protection

malfunction:

against wear: By means of filter elements that meet even the highest demands regarding cleanliness classes.

Protection against

Through installation near to the control values or other expensive components. The specific determined flow rate guarantees a closed by-pass value even at $v \le 200 \text{ mm}^2/\text{s}$ (cold start condition).

Filter elements

Flow direction from outside to centre. The star-shaped pleating of the filter material results in:

- large filter surfaces
- low pressure drop
- high dirt-holding capacities
- long service life

Filter maintenance

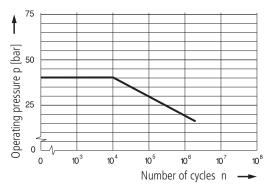
By using a clogging indicator the correct moment for maintenance is stated and guarantees the optimum utilization of the filter life.

Materials

Cover:	Aluminium alloy
Filter housing:	Aluminium alloy
Seals:	NBR (FPM on request)
Filter media:	EXAPOR®MAX 2 - inorganic multi-layer microfibre web
	Paper - cellulose web, impregnated with resin

Accessories

Electrical and/or optical clogging indicators are available - optionally with one or two switching points resp. temperature suppression. Dimensions and technical data see catalogue sheet 60.30.


Characteristics

Operating pressure

0 ... 16 bar, min. 3 x 10^6 pressure cycles Nominal pressure according to DIN 24550

0 ... 40 bar, min. $10^4\ pressure\ cycles$ Quasi-static operating pressure

Permissible pressures for other numbers of cycles

Nominal flow rate

Up to 2000 l/min (16 $\mu m(c)$) resp. up to 1450 l/min at 10 $\mu m(c)$ (see Selection Chart, column 2).

The nominal flow rates indicated by ARGO-HYTOS are based on the following features:

- closed by-pass valve at $\nu \leq$ 200 mm²/s
- element service life > 1.000 operating hours at an average fluid contamination of 0,07 g per l/min flow volume
- flow velocity in the connection lines: up to 25 bar ≤ 4,5 m/s

Filter fineness

5 μm(c) ... 10 μm(c) β-values according to ISO 16889 (see Selection Chart, column 4 and diagram Dx)

Dirt-holding capacity

Values in g test dust ISO MTD according to ISO 16889 (see Selection Chart, column 5)

Hydraulic fluids

Mineral oil and biodegradable fluids (HEEs and HETG, see info-sheet 00.20)

Temperature range

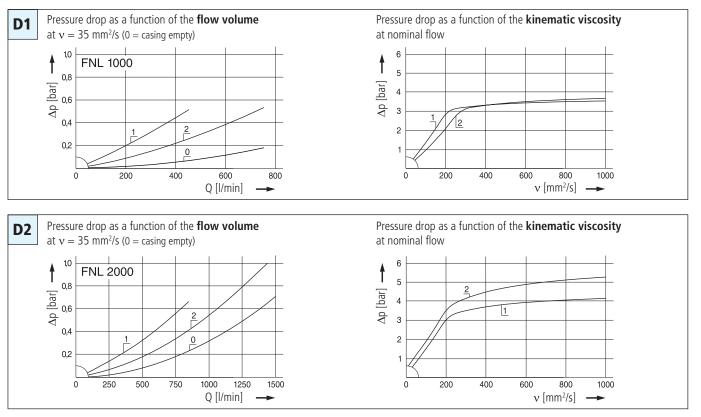
- 30°C ... + 100°C (temporary - 40°C ... + 120°C)

Viscosity at nominal flow rate

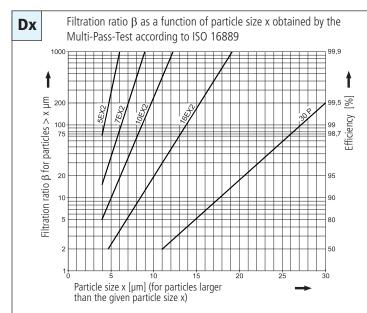
- at operating temperature: $v < 60 \text{ mm}^2/\text{s}$
- as starting viscosity: $v_{max} = 1.200 \text{ mm}^2/\text{s}$
- at initial operation:

The recommended starting viscosity can be read from the diagram D (pressure drop as a function of the kinematic viscosity) as follows: Find the 70 % Δp of the cracking pressure of the by-pass valve on the vertical axis. Draw a horizontal line so that it intersects the Δp curve at a point. Read this point on the horizontal axis for the viscosity.

Mounting position


Preferably vertical, filter head at the bottom

Connection


SAE-flange (3000 psi). Sizes see Selection Chart, line 6 (other connections on request). Standard: connection ports A/B opposed Optional: connection port A sidewise, connection port B at the bottom

Diagrams

Δp -curves for complete filters in Selection Chart, column 3

Filter fineness curves in Selection Chart, column 4

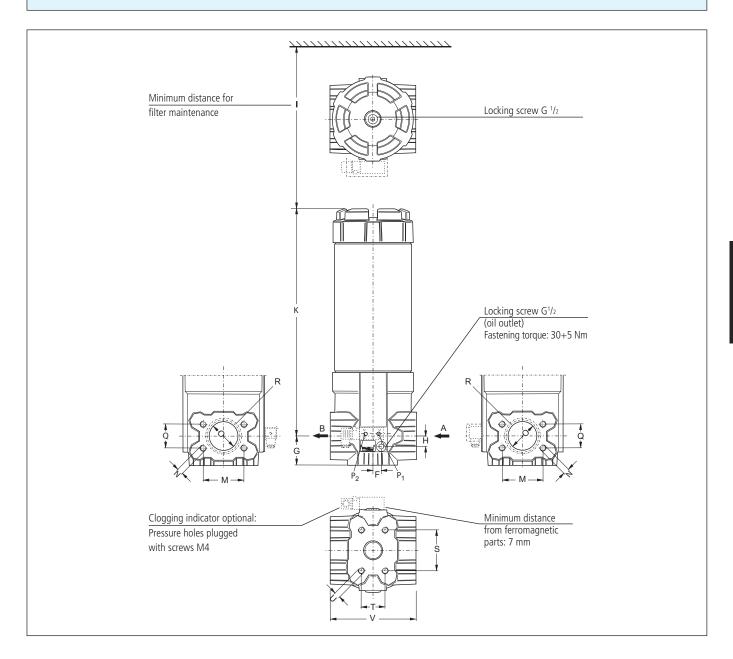
The abbreviations represent the following β -values resp. finenesses:

For EXAPOR®MAX 2- and Paper elements:

5EX2	=	$\bar{\beta}_{5(c)} = 200$	EXAPOR®MAX 2
7EX2	=	$\bar{\beta}_{7(c)} = 200$	EXAPOR®MAX 2
10EX2	=	$\bar{\beta}_{10(c)} = 200$	EXAPOR®MAX 2
16EX2	=	$\bar{\beta}_{16 (c)} = 200$	EXAPOR®MAX 2 EXAPOR®MAX 2 EXAPOR®MAX 2 EXAPOR®MAX 2
		$\bar{\beta}_{_{30(c)}}=200$	

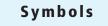
For screen elements:

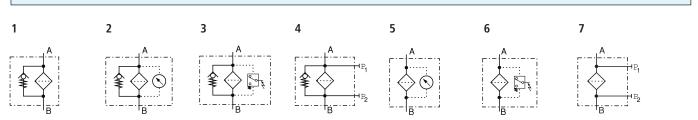
40	S	=	screen	material	with	mesh size	40 µm
----	---	---	--------	----------	------	-----------	-------

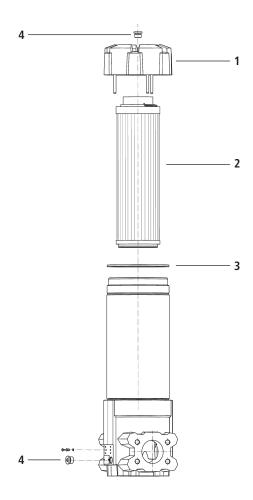

- 60 S = screen material with mesh size 60 µm
- **100 S** = screen material with mesh size 100 μ m Tolerances for mesh size according to DIN 4189.

For special applications, finenesses differing from these curves are also available by using special composed filter material.

Selection Chart


			/		/	/	/		/ /		
		N	e dropsee agram Dicum	e no.	sseediagr.D	+ pacity	B	pressure of by Pass ymbol Replaceme	ot filter els	ement	adicator
Part NO.	M	minal flow Pressur	edropsee agram picum Filte	finene	nrt-holding Con	pacity pacity nection A	racking	Winbol Replaceme	NO. NP	ion cooging	no. Renalts
	l/min			g	/	bar			kg	/	
1	2	3	4	5	6	7	8	9	10	11	12
NL 1000-153	420	D1 /1	5EX2	130	SAE2	3	4	V3.1449-53	21	optional	-
NL 1000-156	555	D1 /2	10EX2	190	SAE2	3	4	V3.1449-56	21	optional	-
NL 2000-153	820	D2 /1	5EX2	260	SAE4	3	4	V3.1493-53	28	optional	-
NL 2000-156	1450	D2 /2	10EX2	370	SAE4	3	4	V3.1493-56	28	optional	
VL 2000-150	1450	DZ/Z	TUEAZ	570	JAE4	5	4	V5.1495-50	20	υρτισπαι	-
Order example Order descript	e: The tion:	Filter FNL	1000-153 FNL 1	has to 000-1	o be suppl	ied wit		ctrical clogging	-	ements show both ite tor - response pres	
art No. (basio logging indio										— Mounted	
For the appro						eet 60	.30.				
Remarks: • The switching (see Selection • The filters list Optionen: • Other filter fir • Check valve in	Chart, ed in th nenesse	column 7). is chart are s on reques	e standard f						ressure o	f the by-pass valve	
				t B at t	he bottom	(standa	rd: cor	nection ports A/I	B oppose	d).	


Dimensions


Measurements

Туре	A/B	F	G	Н	I	К	М	N	0	Q	R	S	Т	U	V
FNL 1000	SAE2	19	76,5	26,5	450	593	77,8	M 12	Ø50	42,6	Ø56-Ø64	130,2	77,8	M 16	224
FNL 2000	SAE4	19	76,5	26,5	890	1033	130,2	M 16	Ø100	77,8	Ø110-Ø118	130,2	77,8	M 16	224

Spare Parts

Pos.	Designation	Part No.
1	Cover (complete)	FNL1000.1200
2	Filter element	see Chart / col. 9
3	O-ring	N.007.1905
4	Locking screw	SV.0620.08

The functions of the complete filters as well as the outstanding features of the filter elements assured by ARGO-HYTOS can only be guaranteed if original ARGO-HYTOS spare parts are used.

Quality Assurance

Quality	y management	according	to	DIN	ΕN	ISO	9001	

To ensure constant quality in production and operation, ARGO-HYTOS filter elements undergo strict controls and tests according to the following ISO standards:

ISO 2941	Verification of collapse/burst pressure rating
ISO 2942	Verification of fabrication integrity (Bubble Point Test)
ISO 2943	Verification of material compatibility with fluids

ISO 3968	Evaluation of pressure drop versus flow characteristics
ISO 16889	Multi-Pass-Test (evaluation of filter fineness and
	dirt-holding capacity)
ISO 23181	Determination of resistance to flow fatigue using high
	viscosity fluid

Before release into the series production the filter casing is tested for fatigue strength in our pressure pulse test rig. Various quality controls during the production process guarantee the leakfree function and solidity of our filters.

Our engineers will be glad to advice you in questions concerning filter application, selection as well as the cleanliness class of the filtered medium attainable under practical operating conditions.

Illustrations may sometimes differ from the original. ARGO-HYTOS is not responsible for any unintentional mistake in this specification sheet.

We produce fluid power solutions ARGO-HYTOS GMBH · Industriestraße 9 · 76703 Kraichtal-Menzingen · Germany Tel: +49 7250 76-0 · Fax: +49 7250 76-199 · info@argo-hytos.com · www.argo-hytos.com